Discretisation Effects in Naive Bayesian Networks
نویسندگان
چکیده
Naive Bayesian networks are often used for classification problems that involve variables of a continuous nature. Upon capturing such variables, their value ranges are modelled as finite sets of discrete values. While the output probabilities and conclusions established from a Bayesian network are dependent of the actual discretisations used for its variables, the effects of choosing alternative discretisations are largely unknown as yet. In this paper, we study the effects of changing discretisations on the probability distributions computed from a naive Bayesian network. We demonstrate how recent insights from the research area of sensitivity analysis can be exploited for this purpose.
منابع مشابه
Improved Bayesian Networks for software project risk asses..
It is possible to build useful models for software project risk assessment based on Bayesian networks. A number of such models have been published and used and they provide valuable predictions for decision-makers. However, the accuracy of the published models is limited due to the fact that they are based on crudely discretised numeric nodes. In traditional Bayesian network tools such discreti...
متن کاملA Validation Test Naive Bayesian Classification Algorithm and Probit Regression as Prediction Models for Managerial Overconfidence in Iran's Capital Market
Corporate directors are influenced by overconfidence, which is one of the personality traits of individuals; it may take irrational decisions that will have a significant impact on the company's performance in the long run. The purpose of this paper is to validate and compare the Naive Bayesian Classification algorithm and probit regression in the prediction of Management's overconfident at pre...
متن کاملImproved Bayesian Networks for Software Project Risk Assessment Using Dynamic Discretisation
It is possible to build useful models for software project risk assessment based on Bayesian networks. A number of such models have been published and used and they provide valuable predictions for decision-makers. However, the accuracy of the published models is limited due to the fact that they are based on crudely discretised numeric nodes. In traditional Bayesian network tools such discreti...
متن کاملVariable Discretisation forAnomaly Detection using Bayesian Networks
Anomaly detection is the process by which low probability events are automatically found against a background of normal activity. By definition there must be many more normal events than anomalous ones. This rare nature of anomalies causes numerical problems for probabilistic methods designed to automatically detect them. This report describes an algorithm that introduces new discretisation lev...
متن کاملBayesian Network Classifiers. An Application to Remote Sensing Image Classification
Different probabilistic models for classification and prediction problems are anlyzed in this article studying their behaviour and capability in data classification. To show the capability of Bayesian Networks to deal with classification problems four types of Bayesian Networks are introduced, a General Bayesian Network, the Naive Bayes, a Bayesian Network Augmented Naive Bayes and the Tree Aug...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012